





Integration of Safety in Design in MOX Fuel Fabrication Facility
Sue King

MOX Safety Fuels the Future



### **Sue King**



- B.S. degree in Chemical Engineering from Virginia Tech
- Started her career working at the Charleston Naval Yard refueling nuclear submarines.
- Worked for the Department of Energy for about a decade in various positions at SRS and Pantex.
- Worked for the SRS M&O contractor for about a decade.
- Since 2006, she has worked for Shaw AREVA MOX Services on the MOX project. Her current position is VP of Projects.



### U.S. Pu Disposition Program









### **Regulatory Regime**

- U.S. Congress mandated (Public Law 105-261, 17 October 1998, Section 3134) the MOX Fuel Fabrication Facility will be:
  - Licensed and regulated by the NRC
  - Comply with Occupational Safety and Health Administration Act of 1970
- DOE and NRC requirements met for Physical security
- NRC requirements for MC&A
- MOX Services is the licensee



# Applicable Regulations



- 10 CFR 70, Domestic Licensing of Special Nuclear Material
- 10 CFR 20, Standards for Protection Against Radiation
- 10 CFR73, Physical Protection of Plants and Materials
- 10 CFR 74, Material Control and Accounting for Special Nuclear Material
- 10 CFR 50 Appendix B, Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants.



#### **Reference Plants**











Total Project Cost

• Concrete:

Reinforcing Steel:

• Cable Tray:

Power/control Cable:

• Process piping:

Gloveboxes:

• Cells:

Analytical Lab:

\$4.86 B

170,000 cubic yard

35,000 tons

47,000 linear feet

3,600,000 linear feet

85 miles

~ 200

24

~85 gloveboxes

>30,000 analyses/year

MOX Safety Fuels the Future







| • | Submit Construction Authorization<br>Request (CAR) to NRC | 2/2001   |
|---|-----------------------------------------------------------|----------|
| • | SER and NRC authorization to start construction           | 3/2005   |
| • | DOE authorization to start construction (CD 3)            | 4/2007   |
| • | Start MFFF Construction                                   | 8/2007   |
| • | End of Construction                                       | 6/2015   |
| • | Begin Hot Startup (Pu in plant)                           | 10/2016* |

<sup>\*</sup>The construction schedule includes 16 months of contingency. Hot Startup is currently tracking to begin in summer of 2015.



## Construction Authorization Request



- Developed and submitted 2/2001
- ~2000 pages
- NRC issued ~250 Requests for Additional Information (RAIs)
- 4 years from time of submittal until NRC issuance of SER
  - Updated during NRC review
- Based on conceptual design and early preliminary design
- Defines safety systems at the system level



## **Start of Construction** August 1, 2007







## Operating License Application



- Submitted to NRC 9/2006
- Document Set
  - License application (2000 pages)
  - Integrated Safety Analysis Summary (3800 pages)
  - Fundamental Nuclear Material Control Plan
  - Classified Matter Protection Plan
  - Physical Security
    - Physical Protection Plan
    - Training and Qualification Plan for Security Personnel
    - Safeguards Contingency Response Plan
  - Emergency Plan Evaluation
     MOX Safety Fuels the Future



### **Document Hierarchy**



Submitted NRC

Available on site

#### **License Application**

**Programmatic** 

## Integrated Safety Analysis Summary

**Demonstration** 

#### **Integrated Safety Analysis**

NSEs, NCSEs, HazOps, Calculations

#### **Project Documents**

BODs, SDDs, P&IDs, Calculations, Specifications, etc



## Integrated Safety Analysis



- Systematic analysis to identify
  - Internal and external hazards
  - Potential event sequences
  - Likelihood and consequences (unmitigated)
  - Identify SSCs at the component level and activities of personnel relied on to mitigate or prevent event sequences
  - Demonstrate Items Relied on For Safety (IROFS) are effective, reliable, and available to meet specified performance criteria



#### **ISA Continued**



- Receptors
  - Facility worker (at location of hazard)
  - Site worker (100m from release point)
  - Individual Outside Controlled Area (IOC)
  - Environment
- Controlled Area boundary is about 160m from stack
- Both chemical and radiological hazards
- Must mitigate events with high consequences to "Highly Unlikely" and events with intermediate consequences to "Unlikely"







| Consequence<br>Category | Facility and Site Worker                          | Individual Outside<br>Controlled Area           |
|-------------------------|---------------------------------------------------|-------------------------------------------------|
| High                    | TEDE > 100 rem  CC > AEGL3, ERPG3,  TEEL3         | TEDE > 25 rem  CC > AEGL2, ERPG2, TEEL2         |
| Intermediate            | 100 rem > TEDE > 25 rem<br>*3 > CC <u>&gt;</u> *2 | 25 rem > TEDE > 5 rem<br>*2 > CC <u>&gt;</u> *1 |
| Low                     | Less than above                                   | Less than above                                 |







CONSEQUENCE

Intermediate High

Low

| No IROFS | IROFS    | IROFS    |
|----------|----------|----------|
| No IROFS | No IROFS | IROFS    |
| No IROFS | No IROFS | No IROFS |

Highly Unlikely

Unlikely

Not Unlikely

LIKELIHOOD

MOX Safety Fuels the Future



## Items Relied on For Safety Design Criteria



- Same criteria for systems protecting workers and public
- Robust design that is not susceptible to single-failure
- Consensus Codes and Standards
- Environmental qualification
- Failure detection







- Perform design verification to ensure IROFS are appropriately incorporated into design
- Identify additional layers of controls for defense-in-depth
- Conduct Human Factors Engineering evaluations of administrative controls and human actions
- Update LA, ISA-S as needed during NRC review process
- Annual updates after NRC license received







- Overall Project is 37% complete
- Construction is 18% complete
- NRC Review of LA to-date
  - > 100 review meetings
  - − ~ 600 RAIs
    - First round of RAIs complete
  - ~\$10 million billed by NRC to pay for their review time
  - No significant design changes
- SER scheduled to be complete 2010



## June 11, 2009









#### **Conclusion**

- Integration of safety into the design follows ISMS principles
  - Identify the hazard
  - Mitigate or prevent the hazard through design
  - Demonstrate that the public, workers, and environment are not adversely affected by the hazard
- Some differences from DOE regulated plutonium glovebox facility

http://www.moxproject.com